The History and Evolution of Java - The Java Buzzwords - Lesson 7

The Java Buzzwords

No discussion of Java’s history is complete without a look at the Java buzzwords. Although
the fundamental forces that necessitated the invention of Java are portability and security,
other factors also played an important role in molding the final form of the language. The
key considerations were summed up by the Java team in the following list of buzzwords:

  • Simple
  • Secure
  • Portable
  • Object-oriented
  • Robust
  • Multithreaded
  • Architecture-neutral
  • Interpreted
  • High performance
  • Distributed
  • Dynamic

Two of these buzzwords have already been discussed: secure and portable. Let’s examine
what each of the others implies.

Simple
Java was designed to be easy for the professional programmer to learn and use effectively.
Assuming that you have some programming experience, you will not find Java hard to master.
If you already understand the basic concepts of object-oriented programming, learning Java
will be even easier. Best of all, if you are an experienced C++ programmer, moving to Java will
require very little effort. Because Java inherits the C/C++ syntax and many of the objectoriented
features of C++, most programmers have little trouble learning Java.

Object-Oriented
Although influenced by its predecessors, Java was not designed to be source-code compatible
with any other language. This allowed the Java team the freedom to design with a blank
slate. One outcome of this was a clean, usable, pragmatic approach to objects. Borrowing
liberally from many seminal object-software environments of the last few decades, Java
manages to strike a balance between the purist’s “everything is an object” paradigm and
the pragmatist’s “stay out of my way” model. The object model in Java is simple and easy to
extend, while primitive types, such as integers, are kept as high-performance nonobjects.

Robust
The multiplatformed environment of the Web places extraordinary demands on a
program, because the program must execute reliably in a variety of systems. Thus, the
ability to create robust programs was given a high priority in the design of Java. To gain
reliability, Java restricts you in a few key areas to force you to find your mistakes early in
program development. At the same time, Java frees you from having to worry about many
of the most common causes of programming errors. Because Java is a strictly typed
language, it checks your code at compile time. However, it also checks your code at run
time. Many hard-to-track-down bugs that often turn up in hard-to-reproduce run-time
situations are simply impossible to create in Java. Knowing that what you have written
will behave in a predictable way under diverse conditions is a key feature of Java.
To better understand how Java is robust, consider two of the main reasons for program
failure: memory management mistakes and mishandled exceptional conditions (that is,
run-time errors). Memory management can be a difficult, tedious task in traditional programming environments. For example, in C/C++, the programmer will often manually
allocate and free all dynamic memory. This sometimes leads to problems, because
programmers will either forget to free memory that has been previously allocated or,
worse, try to free some memory that another part of their code is still using. Java virtually
eliminates these problems by managing memory allocation and deallocation for you. (In fact,
deallocation is completely automatic, because Java provides garbage collection for unused
objects.) Exceptional conditions in traditional environments often arise in situations such
as division by zero or “file not found,” and they must be managed with clumsy and hard-toread
constructs. Java helps in this area by providing object-oriented exception handling. In
a well-written Java program, all run-time errors can—and should—be managed by your
program.

Multithreaded
Java was designed to meet the real-world requirement of creating interactive, networked
programs. To accomplish this, Java supports multithreaded programming, which allows you
to write programs that do many things simultaneously. The Java run-time system comes with
an elegant yet sophisticated solution for multiprocess synchronization that enables you to
construct smoothly running interactive systems. Java’s easy-to-use approach to multithreading
allows you to think about the specific behavior of your program, not the multitasking
subsystem.

Architecture-Neutral
A central issue for the Java designers was that of code longevity and portability. At the time
of Java’s creation, one of the main problems facing programmers was that no guarantee
existed that if you wrote a program today, it would run tomorrow—even on the same
machine. Operating system upgrades, processor upgrades, and changes in core system
resources can all combine to make a program malfunction. The Java designers made
several hard decisions in the Java language and the Java Virtual Machine in an attempt to
alter this situation. Their goal was “write once; run anywhere, any time, forever.” To a great
extent, this goal was accomplished.

Interpreted and High Performance
As described earlier, Java enables the creation of cross-platform programs by compiling into
an intermediate representation called Java bytecode. This code can be executed on any
system that implements the Java Virtual Machine. Most previous attempts at cross-platform
solutions have done so at the expense of performance. As explained earlier, the Java
bytecode was carefully designed so that it would be easy to translate directly into native
machine code for very high performance by using a just-in-time compiler. Java run-time
systems that provide this feature lose none of the benefits of the platform-independent code.

Distributed
Java is designed for the distributed environment of the Internet because it handles TCP/IP
protocols. In fact, accessing a resource using a URL is not much different from accessing a
file. Java also supports Remote Method Invocation (RMI). This feature enables a program to
invoke methods across a network.

Dynamic
Java programs carry with them substantial amounts of run-time type information that is used
to verify and resolve accesses to objects at run time. This makes it possible to dynamically link
code in a safe and expedient manner. This is crucial to the robustness of the Java environment,
in which small fragments of bytecode may be dynamically updated on a running system.

No comments: